OOP Objektorientierte Programmierung in PHP - Part 3
Hallo liebe Community!

Dies ist mein erstes Tutorial also seit nicht zu streng mit der Kritik, Uber Verbesserungsvorschlage wirde ich mich
dennoch freuen!

Ich setze voraus, dass man weifld wie Funktionen geschrieben werden und dass man mit Variablen umgehen kann.
AuRerdem sollte man folgende Parts meines Tutorials gelesen haben:

¢ [wikilOOP Objektorientierte Programmierung in PHP - Part 1[/wiki]
¢ [wikilOOP Objektorientierte Programmierung in PHP - Part 2[/wiki]

Ich werde weiterhin mit unseren Tollen Raumschiffen spielen xD

So, jetzt stellt euch vor das euer Browsergame das beste auf der Welt ist und ihr es ewig weiter entwickelt. So nach 50
Jahren seid ihr dann sehr alt und auch ein wenig vergesslich. Nun vergesst ihr zum Beispiel dass man Raumschiffe nicht
umbauen kann! Ein Jager wird niemals ein Zerstdrer werden! Dafur und fur andere wesentlich sinvollere
Anwendungsbereiche wurden die Konstanten erfunden (wer nicht weil3 was eine Konstante ist, PN dann kommt nen Tut,
sonst php manual). In einer Klasse kann man leider nicht einfach eine Konstante definieren. Man muss einer
Klassenkonstanten einen konstanten Wert geben, und das schon zur implementierung des Programms. Das heif3t man
darf keine Funktion, keinen Variable, nicht mal eine mathematische Rechenoperation benutzen, um den Wert einer
Konstanten zu definieren. Das sieht dann so aus:

Quellcode

1. <?php

2. class Jaeger

3.

4. private $leben;
5. private $farbe

6. const RAUMSCHIFFTYP ="Jager";

8. public function __construct($farbe = "schwarz")
9. {

10. $this->farbe = $farbe;

11. $this->leben = 100;

12. }

13. public function fliegen()

15. {

16. echo "l beliiiiiiiieeeeve | can fllaaaayyyyy";
17. }

18. public function getLeben()

20. {

21. return $this->leben;

22. }

23. public function setLeben($leben)

25. {

26. $this->leben = $leben;

27. }

28. public function getFarbe()

30. {

31. return "Das Raumschiff ist in ".$this->farbe." angestrichen";
32. }

38. public function getRaumschifftyp()

35. {

36. return self::RAUMSCHIFFTYP;
37. }

38. }

80. $Schiff = new Jaeger();

41. echo $Schiff->getLeben();

42. echo $Schiff->getFarbe();

43. echo $Schiff->getRaumschifftyp();
44, echo $Schiff::RAUMSCHIFFTYP;
45, echo Jaeger::RAUMSCHIFFTYP;
46. ?>

Alles anzeigen

Am Anfang der Klasse wird die Konstante (constant) initialisiert. Diese kann sich im gesamten Script NICHT mehr &ndern.
Um auf die Konstante zuzugreifen wird eine andere Variante wie fir "normale" Eigenschaften benutzt (Z. 36,44&45). Im 1.

Part erwéhnte ich schon das "->" der Pfeil nicht die einzige Moglichkeit ist auf properties zuzugreifen. Der doppelte
Doppelpunkt "::" ist eine weitere Art des Zugriffs. Mit dem "::" kann man jedoch nur auf statische (static, wird
wahrscheinlich in Part 5 dran kommen) Eigenschaften von KLASSEN (nicht Objekten) und auf Klassenkonstante (die ja
auch statisch sind) zugreifen. Um auf eine Klassenkostante zuzugreifen verwendet man in der Klasse selber statt "$this"
"self". Um von auR3erhalb der Klasse auf die Konstante zuzugreifen kann man entweder das Objekt oder den
Klassennamen, jeweils gefolgt von dem "::" verwenden. Der Ubersichtlichkeit wegen nimmt man eher das Objekt
("$Schiff").

Im néchsten Part gehe ich auf Vererbung ein. Interfaces werden NICHT behandelt (einige meinen das hatte mit
Vererbung zu tun...) [wiki]OOP Objektorientierte Programmierung in PHP - Part 4[/wiki]

nOx-fOx

https://www.easy-coding.de/wiki/Entry/103-O0OP-Objektorientierte-Programmierung-in-PHP-Part-3/?s=e8417debad582ff73f{8e98df3ef6 4d89fedff16

2

https://www.easy-coding.de/wiki/Entry/104-OOP-Objektorientierte-Programmierung-in-PHP-Part-4/?s=e8417debad582ff73ff8e98df3ef64d89fedff16
https://www.easy-coding.de/wiki/Entry/103-OOP-Objektorientierte-Programmierung-in-PHP-Part-3/
https://www.easy-coding.de/wiki/Entry/103-OOP-Objektorientierte-Programmierung-in-PHP-Part-3/

