EinfGhrung in PDO

PDO(PHP Data Object) ist der moderne Weg mit PHP5 auf die Datenbank zuzugreifen. Es bietet eine Abstraktionsschicht
fur den Datenzugriff. Unabh&ngig vom verwendeten DBMS kénnen die selben Funktionen verwenden.

PDO raumt auferdem mit vielen Sicherheitsangsten auf, die man von anderen Datenbank-Schnittstellen kennt. Die vielen
Wege die teilweise zum selben Ergebnis filhren schrecken viele Programmierer ab, daher soll dieses Tutorial einen
konsistenten Weg liefern.

Konfiguration

Eine gangige Art die Konfigurationvariablen zu hinterlegen ist eine finale Klasse mit Konstanten. Sie bendtigt relativ wenig
Prozess Overhead.

Quellcode

final class Configuration {

const DB_HOST="localhost’;

const DB_ DATABASE='datebase",

const DB_PORT=3306;

const DB_USER='database_user’

const DB_ PASSWORD='database_password’,

}

Nogo,rwdE

== Verbindung herstellen ==

Einleitend wurde erlautert, dass PDO eine Abstraktionsschicht fir den Datenbankzugriff bereitstellt. Durch Abstraktion
folgert Einschréankung - namlich auf den Nenner des schwéchsten unterstitzen DBMS. Aus mehreren Griinden macht es
Sinn den Datenbankzugriff weiter zu kapseln.

Wir erstellen uns daher eine neue Klasse "MyDB" die als Singleton implementiert wird, somit wird verhindert, dass in der
selben PHP Anwendung mehrmals die Verbindung hergestellt wird.

AuRerdem erstellen wir eine persistente Verbindung - das bietet sich bei den meisten Webanwendungen an.

Quellcode

1. class MyDB {

2. private static $db;

8. static public function getinstance() {

5. if(!self::$db) {

6. self::$db = new PDO(

7. 'mysql:host=".Configuration::DB_HOST.";dbname=".Configuration::DB_DATABASE.";port=".Configuration::DB_PORT,
8. Configuration::DB_USER,

9. Configuration::DB_PASSWORD,

10. array(

11. PDO:ATTR_PERSISTENT => true,

12. PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION ,

13. PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC
14.)

15.),

16. }

17. return self::$db;

18. }

19. }

Alles anzeigen

== Datenbankanderungen ==

Die einfachste Form von Datenbankzugriffen stellt das Andern kleiner Daten dar. Parameter die man per Formular
Ubergibt oder Uber die URL erhalt, werden als Array-Parameter durch das execute() Statement gebunden.

AuRerdem fallt auf, dass der SQL-String durch das prepare Statement vorbereitet wird. Das ist ein Performance Faktor,
sollte man das selbe "Prepared Statement" mehrmals mit unterschiedlichen Parameter ausfihren wollen (was ein extrem

seltener Fall ist).
Quellcode

$pdoparams = array(

“userid' =>$ REQUEST/'userid1,

"“website' => 'http://www.easy-coding.de'

);

$sql = "UPDATE user

SET website = :website

WHERE userid = :userid

LIMIT 1"

$stmt = MyDB::getlnstance()->prepare($sql);
$stmt->execute($pdoparams);

CoOoNo~WDNE

=

== Neue Datenbankeintrage: ID des Datensatzes ==
Werden auto_increment (MySQL) oder SERIAL (postgreSQL) Felder genutzt, kimmert sich das DBMS bei neuen
Eintragen um die neuen Priméarschlissel. Sie werden mit der Funktion lastinsertlD abgefragt.

Quellcode

$pdoparams = array(

"website' => 'http://www.easy-coding.de'

)i

$sgl = "INSERT INTO user

(website)

VALUES (:website)";

$stmt = MyDB::getInstance()->prepare($sql);
$stmt->execute($pdoparams);

$userID = MyDB::getInstance()->lastinsertld();
echo $userlID;

COoNo~WDNE

=

== Datenbankabfragen ==

Datenbankabfragen werden genauso wie Anderungen konstruiert - einzig die zuséatzliche Methode fetch() wird danach
aufgerufen.

Wir haben eingangs beim Konstruieren den Standard Fetch-Modus auf ASSOC geandert. Dadurch erhalten wir ein Array
Objekt mit dem Spaltennamen als Schltssel und dem Inhalt als Wert erhalten. Fiihren wir die fetch() Funktion mehrmals
durch erhalten wir alle Zeilen (falls mehrere vorhanden sind).

Quellcode

$pdoparams = array(

“userid' =>$_REQUEST['userid’]
)i
$sql = "SELECT *

FROM user

WHERE userid = :userid ";

$stmt = MyDB::getInstance()->prepare($sql);
$stmt->execute($pdoparams);

$row = $stmt->fetch();

10. print_r($row);

11. $row = $stmt->fetch();

12. print_r($row);

©CoNo~WDNE

Alles anzeigen

== Mehrere Daten abfragen ==

https://www.easy-coding.de/wiki/Entry/12-Einf%C3%BChrung-in-PDO/?s=f8bb6e56¢167738d31489dab058c69951864e1f7

https://www.easy-coding.de/wiki/Entry/12-Einführung-in-PDO/

Haufig werden einfach alle Daten abgefragt, die man per SQL String definiert. Statt der Methode fetch() benutzt man dazu
die Methode fetchAll(). Die Ruckgabe der Funktion ist ein normales zweidimensionales Array, Uber das man mit foreach
iterieren kann.

Quellcode

$pdoparams = array(

"username' =>"%".$_REQUEST['username']."%",
"minage' => $ REQUEST['minage’],

"maxage' => $_REQUEST['maxage']

);
$sql = "SELECT *

FROM user

WHERE username LIKE :username

AND age BETWEEN :minage AND :maxage";
10. $stmt = MyDB::getInstance()->prepare($sql);
11. $stmt->execute($pdoparams);

12. foreach($stmt->fetchAll() as $row) {

13. print_r($row);

14. }

CoNoGO AN

Alles anzeigen

== Kommaseparierte Liste mit IN ==
MySQL und andere DBMS bieten die Moglichkeit kommaseparierte Listen mit IN zu verarbeiten.
Der SQL String um die Benutzer 1,3 und 5 zu l6schen wirde folgendermal3en aussehen:

Quellcode

1. DELETE FROM user
2. WHERE userID IN (1,3,5)

Um eine kommaseparierte Listen verarbeiten zu kdnnen kennt das PDO leider keine Mdglichkeit.
Die Klasse MyDB wird daher um eine spezielle implode Methode erweitert:

Quellcode

. class MyDB {
. private static $escapecounter = 0;

. $tmp = array();
. foreach($arr as $val) {
. $key = "implode'.self::$escapecounter++;
9. $pdoparams[$key] = $val;
10. $tmp[] = $key;
11. }
12. return implode(',', $tmp);
13. }
14. }

1

2

3. ..

8. static public function implode(&$pdoparams, $arr) {
6

7

8

Alles anzeigen

Das Beispiel erweitern wir wie folgt:
Quellcode

1. $pdoparams = array();
2. $sql = "DELETE FROM user

https://www.easy-coding.de/wiki/Entry/12-Einf%C3%BChrung-in-PDO/?s=f8bb6e56¢167738d31489dab058c69951864e1f7

https://www.easy-coding.de/wiki/Entry/12-Einführung-in-PDO/

3. WHERE userID IN (".MyDB::implode($pdoparams, array(1,3,5)).")";
4. $stmt = MyDB::getInstance()->prepare($sql);
5. $stmt->execute($pdoparams);

Die Methode implode() liefert einen String mit Platzhaltern zuriick:
Quellcode

1. DELETE FROM user
2. WHERE userID IN (:implode0,:implodel,:implode2)

Zusatzlich wird das als Referenz Gibergebene Array $pdoparams um die Inhalte erweitert. Nach Ausfiihrung von implode
sieht das Array also wie folgt aus:
Quellcode

. Array (

. [:implode0] => 1
. [simplodel] => 3
[:implode2] =>5
)

abrwn R

Das execute() bindet diese Parameter an den String und das Statement wird sicher ausgefihrt. Die Losung ist besser als
sich den String mit PHP Stringfunktionen selbst zusammen zu bauen, da das PDO nur auf diese Art vor SQL Injections
schitzt.

== Code Download ==
Den fertigen Code von Klasse und dem letzten Beispiel gibt es zum Download unter demo.easy-
coding.de/php/pdo/download.zip.

https://www.easy-coding.de/wiki/Entry/12-Einf%C3%BChrung-in-PDO/?s=f8bb6e56¢167738d31489dab058c69951864e1{7

http://demo.easy-coding.de/php/pdo/download.zip
http://demo.easy-coding.de/php/pdo/download.zip
https://www.easy-coding.de/wiki/Entry/12-Einführung-in-PDO/
https://www.easy-coding.de/wiki/Entry/12-Einführung-in-PDO/

