Arbeiten mit Dateien Teil 1. Grundlagen und Funktionsibersicht

== Vorwort ==

Wenn man mit C++ programmiert wird man friher oder spéater nicht Drumherum kommen irgendwelche Dateien zu lesen
oder zu beschreiben.

Dafir gibt es mittlerweile viele Méglichkeiten, ich werde hier nur die von der C++- Standardbibliothek (wird ab jetzt mit
CPPLIB abgekirzt) bereitgestellte Méglichkeit besprechen und nur dieser sollte auch verwendet werden, da diese
Plattformunabhangig ist und wer damit perfekt umgehen lernt, wird bei Portierungen keine Probleme haben. Genauso
sollte hier gewonnenes Wissen auf die aquivalenten C-Funktionen Ubertragen werden kénnen.

Uber diese Artikelreihe:
Optionale Parameter werden mit Eckigen Klammern [] versehen, also solche die man nicht zwingen Angeben muss.

== Grundlagen ==
Die wichtigen Themen werden hier nur kurz Angeschnitten und sollte gegeben falls Uber externe Quellen vertieft werden.

=== Was ist eigentlich eine Datei? ===
Eine Datei wird durch ihren Speicherort, ihren Namen und ihren Inhalt definiert.

Der Aufbau des Speicherorts, sowie der Name der Datei kann von Betriebssystem zu Betriebssystem variieren und sieht
unter Windows z.B.: so aus:

C:\Programme\Max\Hallo.txt

-> Datentrager Buchstabenidentifikation

-> Ordnerstruktur, einzelne Unterordner werden durch ein Backslash \ getrennt (hingegen bei Linux einfach nur Slash /)
-> Dateiname

-> Datei(namens)Erweiterung, deutet oft auf den gespeicherten Inhalt hin

Der Inhalt hat eine Variable Lange und wird durch verschiedene Bytefolgen bestimmt;

[Blockierte Grafik: http://img855.imageshack.us/img855/9540/datei.jpg]

In diesem Bild sieht man eine Datei der Lange 16, im linken Teil des Fensters werden die Hexadezimal-Werte der
einzelnen Bytes dargestellt und rechts die dazugehdrige ASCII-Zeichen.

Siehe dazu auch [wikipedia]Datei[/wikipedia].

=== Wie ist ein Byte definiert? ===

Ein Byte hat 8 Bit und ein Bit ist entweder eine 1 oder eine 0.

In C++ gibt es verschiedene Datentypen die durch verschiedene Anzahl an Bytes reprasentiert werden, um diese Anzahl
zu erhalten gibt es die sizeof Funktion.

Siehe dazu auch [wikipedia]Byte[/wikipedia] und [wikipedia]Bit[/wikipedia].

=== Was ist der Unterschied zwischen Binar- und Textdatei? ===

Im Prinzip gibt es keine, jedoch wird in der Programmierung oft zwischen diesen zwei Dateien, besser gesagt Modi
unterschieden.

Im Bindrmodus werden die Daten wie sie sind geschrieben, also Roh.

Im Textmodus werden nach Mdéglichkeiten alle Daten bzw. die Gibergebenden Datentypen in ihre ASCII-Reprasentation
umgewandelt, selbe gilt in umgekehrter Richtung beim einlesen.

=== Was ist ein ASCII-Zeichen bzw. eine Tabelle? ===

Jedem Zeichen wie Buchstaben und Zahlen sind festgelegte Werte zugewiesen um in der Computerwelt damit einheitlich
arbeiten zu kdnnen und damit die Darstellung sicherzustellen.

Siehe dazu auch [wikipedia] ASCII[/wikipedia].

=== Zahlensysteme ===

In der Mathematik gibt es verschiedene Zahlensysteme, das bekannteste wird wohl das Dezimalsystem sein.
Des Weiteren gibt es noch Binar, Oktadezimal, Hexadezimal und viele andere, dies sind jedoch die wichtigsten.
Siehe dazu auch [wikipedia]Dualsystem[/wikipedia], [wikipedia]Oktalsystem[/wikipedia] und

http://img855.imageshack.us/img855/9540/datei.jpg

[wikipedia]Hexadezimalsystem[/wikipedia].

== Einleitung ==

In der CPPLIB werden die Dateioperationen in drei Objekte unterteilt und zwar in Ausgabeobjekte(ofstream),
Eingabeobjekte(ifstream) und in Ein-/Ausgabeobjekte(fstream), diese sollten nach ihrem Aufgabengebiet ausgewahlt
werden um einmal Ressourcen zu sparen und um logische Fehler zu vermeiden.

Des Weiteren unterscheidet man zwischen Binardateien und Textdateien, fir Anfanger ist wohl letzteres interessanter
und alle genannten Objekte werden standardmaRig in diesem Modus geo6ffnet, dabei werden die Standard Typen
automatisch in Zeichenketten umgewandelt.

Nun um die oben genannte Objekte verwenden zu kdnnen muss man zuerst den dazugehorigen CPPLIB-Header
einbinden:

Quellcode

1. #include <fstream>
2. using namespace std,;

Wer an dieser Stelle schon den CPPLIB-Header iostream eingebunden hat kann die Einbindung von fstream weglassen,
da diese von iostream automatisch eingebunden wird.

Der Befehl "using namespace std" muss nur einmal (pro Gltigkeitsbereich definiert) werden, er bewirkt dass man auf
namespace-Objekte, wie die Streamklassen direkt zugreifen kann, wer weiteres wissen will kann sich tiber den scope
operator selbststandig erkundigen.

== Funktionsubersicht ==

Die Funktionen der Objekte ofstream, ifstream und fstream sind nahezu identisch bis auf die Tatsache das ofstream-
Objekte nur zur Dateieingabe, die ifstream-Objekte nur zur Dateiausgabe und fstream-Objekte fur beides benutzt
werden kdnnen und dementsprechend nur fir das Objekt relevanten Funktionen besitzen.

=== Der Konstruktor ===
Wird verwendet um ein Stream-Objekt zu erstellen und bei Bedarf um direkt eine Datei zu 6ffnen:

Quellcode

1. fstream stream[(const char * Dateiname [, openmode Mode = ios_base::in | ios_base::out])];
2. ifstream stream][(const char * Dateiname [, openmode Mode = ios_base::in]) ;
3. ofstream stream[(const char * Dateiname [, openmode Mode = ios_base::out)) ;

Parameter Dateiname: Muss ein C-String sein, also eine nullterminierte Zeichenkette sein.
Parameter Mode: Hat je nach Objekt verschiedene Standartwerte (siehe oben). Die Eigenschaften kbnnen mit einer oder-
Verknipfung | logisch kombiniert werden. Mdgliche Werte:

ios_base::app (append) Setzt den Dateipositionszeiger vor jeder Ausgabe ans Ende der Datei.
ios_base::ate (at end) Setzt den Dateipositionszeiger nach dem 6ffnen ans Ende der Datei.
ios_base::binary (binary) Offnet die Datei im Binar-Modus.

ios_base::in (in) Offnet die Datei im Lese-Modus (Eingabe).

ios_base::out (out) Offnet die Datei im Schreib-Modus (Ausgabe).

e ios_base::trunc (truncate) Der Inhalt der gedffneten Datei wird geldscht.

Anmerkung:
Das ostream-Objekt |6scht mit den Standartparametern immer den Inhalt der zu 6ffnenden Datei, obwohl ios_base::trunc

nicht als Standartwert angeben ist. Wenn man dies nicht mdchte sollte man deswegen an dieser Stelle aufpassen und
explizit ios _base::app oder ios_base::in angeben.

=== Die Memberfunktion open() ===
Wird zum Offnen von Dateien verwendet;

https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und- 2
Funktions%C3%BCbersicht/?s=4d68c29f7265f6d43ca09da04b042d8041f78bc5

https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/
https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/

Quellcode

1. fstream.open (const char * Dateiname [, openmode Mode = ios_base::in | ios_base::out]);
2. ifstream.open(const char * Dateiname [, openmode Mode = ios_base::in));
3. ofstream.open(const char * Dateiname [, openmode Mode = ios_base::out));

Die Parameter sind dieselben wie beim Konstruktor, siehe weitere Infos Konstruktor.

=== Die Memberfunktion close() ===
Wird zum SchlieRen einer getdffneten Datei verwendet:

Quellcode

1. fstream.close ();
2. ifstream.close();
3. ofstream.close();

Sollte immer dann Aufgerufen werden wenn keine Schreib- und/oder Leseoperationen mehr vorliegen.

=== Die Memberfunktion is_open() ===
Wird zur Statustiberprifung verwendet, genauer ob eine Datei gedffnet werden konnte oder nicht:
Quellcode

1. fstream.is_open ();
2. ifstream.is_open();
3. ofstream.is_open();

Die Funktion gibt true zuriick wenn eine Datei offen ist und false wenn keine Datei offen ist bzw. nicht getffnet werden
konnte.

=== Positionierung ===
Die Positionierungsfunktionen verwendeten einen dynamischen integralen Datentypen streampos, der Einfachheit
halber kann hier [unsigned] int angenommen werden.

==== Die Memberfunktion tellp() und tellg() ====
Werden verwendet um die aktuelle Schreibposition (tellpii1) bzw. die aktuelle Leseposition (tellg-') zu ermitteln:

Quellcode

fstream.tellg();
fstream.tellp();
ifstream.tellg();
ofstream.tellp();

asnE

Ruckgabe ist die aktuelle Position vom Typ streampos.

==== Die Memberfunktion seekp() und seekg() ====
Werden verwendet um die aktuelle Schreibposition (seekp ') bzw. die aktuelle Leseposition (seekg- ') zu verschieben
bzw. zu positionieren:

Quellcode
1. ifstream.seekg(streampos Position)
2. ifstream.seekg(streampos Offset, seekdir Start);
3. ofstream.seekp(streampos Position)
4. ofstream.seekp(streampos Offset, seekdir Start);

https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und- 3
Funktions%C3%BCbersicht/?s=4d68c29f7265f6d43ca09da04b042d8041f78bc5

https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/
https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/

Diese Funktionen sind auch beim fstream-Objekt verfligbar.

Parameter Position: Gibt die absolute Position, vom Anfang der Datei an.

Parameter Offset: Relative Positionsverschiebung, von Start abhangig. (Negative Werte erlaubt)
Parameter Start: Gibt die Startposition an. Gultige Werte, konnen nicht kombiniert werden:

¢ ios_base::beg (begin) Vom Anfang der Datei.
e ios_base::cur (current) Von der aktuellen Position, siehe tellp/tellg.
e ios_base::end (end) Vom Ende der Datei.

=== Schreiben ===

==== Die Memberfunktion put() ====

Wird verwendet um einzelne Bytes an die aktuelle Schreibposition zu schreiben, dabei wird, falls vorhanden, das Byte
Uberschrieben und die Schreibposition um eins verschoben:

Quellcode

1. fstream.put (char Byte);
2. ofstream.put(char Byte);

Parameter Byte: Das zu schreibende Byte.

==== Die Memberfunktion write() ====
Wird verwendet um Datenbldcke an die aktuelle Schreibposition zu schreiben, dabei wird, falls vorhanden, Daten
Uberschrieben und die Schreibposition um die Datenblocklange verschoben:

Quellcode

1. fstream.write (const char *Daten, streamsize Laenge);
2. ofstream.write(const char *Daten, streamsize Laenge);

Parameter Daten: Ein Zeiger im Speicher auf die zu schreibenden Daten.
Parameter Lange: Die Lange der zu schreibenden Daten. Dynamischer Integraler Datentyp kann der Einfachheit halber
als int angesehen werden.

==== Der Schreiboperator ====

Der Schreib-Operator << ist ein machtiges Werkzeug um alle gangigen Typen in eine Datei zu schreiben sowie
benutzerdefinierte Typen elegant zu schrieben, auf letzteres wird in den folgenden Artikel noch genauer eingegangen.
Die Daten werden an die aktuelle Schreibposition geschrieben, vorhandene Daten werden gegebenenfalls Uberschrieben
und die Schreibposition wird um die Datengré3e automatisch verschoben.

Quellcode

1. fstream << bool(true) << int(8) << float(3.14) << (void*)(OxFFFF) << char('Z") << "Hello World" << endl;
2. ofstream << bool(true) << int(8) << float(3.14) << (void*)(0xFFFF) << char('Z") << "Hello World" << endl;

Wie man sieht kommt der Schreiboperator dem der Konsole (cout) nahe und man kann grof3tenteils auch die Befehle der
Konsole verwenden.

=== Lesen ===

==== Die Memberfunktion get() ====

Wird verwendet um ein Byte von der aktuellen Position einzulesen, dabei wird die Leseposition um eins verschoben:

Quellcode

1. fstream.get ();
2. ifstream.get();

https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-
Funktions%C3%BCbersicht/?s=4d68c29f7265f6d43ca09da04b042d8041f78bc5

https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/
https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/

Ruckgabe ist eine int-Représentation des eingelesenen Bytes.

Alternativer Funktionsaufruf:
Quellcode

1. fstream.get (char &Byte);
2. ifstream.get(char &Byte);

Parameter Byte: Variable in die das eingelesene Byte gespeichert werden soll.

==== Die Memberfunktion getline() ====
Wird groftenteils bei Textdateien verwendet um eine Zeile, beginnend von der aktuelle Leseposition, einzulesen, dabei
wird die Leseposition automatisch um die Anzahl der gelesenen Bytes verschoben:

Quellcode

1. fstream.getline (char* Daten, streamsize Laenge [, char Trennzeichen]);
2. ifstream.getline(char* Daten, streamsize Laenge [, char Trennzeichen]);

Parameter Daten: Ein Zeiger im Speicher an dem die gelassenen Daten abgelegt werden sollen.

Parameter Lange: Grol3e des Speicherbereichs der Daten. Dynamischer Integraler Datentyp kann der Einfachheit halber
als int angesehen werden.

Parameter Trennzeichen: Optional, Zeichen bis zu welchem eingelesen werden soll. Falls nicht angegeben wird das
betriebssystemabhéngige Zeichen fir Zeilenumbruch verwendet.

==== Die Memberfunktion read() ====
Wird verwendet um Datenbldcke von der aktuellen Leseposition zu lesen, dabei wird die Leseposition um die Anzahl der
gelesenen Bytes verschoben:

Quellcode

1. fstream.read (char *Daten, streamsize Leange);
2. ifstream.read(char *Daten, streamsize Leange);

Parameter Daten: Ein Zeiger im Speicher an dem die gelesenen Daten abgelegt werden sollen, muss gréRer gleich der
GroRe der zu lesenden Datengréi3e sein.

Parameter Lange: Die Lange der zu lesenden Daten. Dynamischer Integraler Datentyp kann der Einfachheit halber als int
angesehen werden.

==== Der Leseoperator ====

Der Lese-Operator >> ist ein machtiges Werkzeug um alle gangigen Typen aus einer Datei zu lesen sowie
benutzerdefinierte Typen elegant zu lesen, auf letzteres wird in den folgenden Artikel noch genauer eingegangen.

Die Daten werden von der aktuellen Leseposition gelesen und die Leseposition wird um die Datengré3e automatisch
verschoben.

Quellcode
1. fstream >> Bool >> Int >> Char;
2. ifstream >> Bool >> Int >> Char;
Wie man sieht kommt der Leseoperator dem der Konsole (cout) nahe und man kann diesen gré3tenteils genauso
handhaben.
== Weitere Artikel ==

o Arbeiten mit Dateien Teil 2: Textdateien (demnéchst)

https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und- 5
Funktions%C3%BCbersicht/?s=4d68c29f7265f6d43ca09da04b042d8041f78bc5

https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/
https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/
https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/
https://www.easy-coding.de/wiki/Entry/149-Arbeiten-mit-Dateien-Teil-1-Grundlagen-und-Funktionsübersicht/

