
Asynchrones Downloaden eines Bildes mit Anzeige eines 
Progressbars

Nach dem ich schon gezeigt habe, wie man eine asynchrone ImageView unter MonoTouch realisiert, hier jetzt der XAML-
Ansatz. Getestet mit Windows Phone 7, aber sollte auch in Silverlight laufen:

Als erstes brauchen wir mal den XAML-Teil
Quellcode

1. <StackPanel>
2. <ProgressBar x:Name="imagePerformanceProgressBar" Foreground="#FF41A50F" IsIndeterminate="False" 

Value="{Binding Image.DownloadProgress}" Visibility="{Binding Image.IsLoading, Converter={StaticResource 
VisibilityConverter}}" HorizontalAlignment="Left" Width="150" Height="20" VerticalAlignment="Center" />

3. <TextBlock Text="Laden..." Foreground="Black" FontSize="12" VerticalAlignment="Center" 
HorizontalAlignment="Left" Margin="10,20,0,0" Visibility="{Binding Image.IsLoading, Converter={StaticResource 
VisibilityConverter}}"/>

4. <Image Source="{Binding Image.Image}" VerticalAlignment="Bottom" ImageOpened="OnImageOpened" 
Stretch="None"/>

5. </StackPanel>

Diesen Binden wir an unser ImageViewModel

Quellcode

1. using System;
2. using System.ComponentModel;
3. using System.Windows.Media.Imaging;
4.5. namespace your.space
6. {
7. /// <summary>
8. /// Class representing a ViewModel of an image
9. /// </summary>

10. public class ImageViewModel : INotifyPropertyChanged
11. {
12. #region Members
13.14. bool isLoading;
15. int progress;
16.17. #endregion
18.19. #region Constructors
20.21. /// <summary>
22. /// Initializes a new instance of the <see cref="ImageViewModel"/> class.
23. /// </summary>
24. /// <param name="imageUrl">The image URL.</param>
25. public ImageViewModel(string imageUrl)
26. : this(imageUrl, null) { }
27.28. /// <summary>
29. /// Initializes a new instance of the <see cref="ImageViewModel"/> class.
30. /// </summary>
31. /// <param name="imageUrl">The image URL.</param>
32. /// <param name="fallbackImage">The fallback image.</param>
33. public ImageViewModel(string imageUrl, BitmapImage fallbackImage)
34. {
35. if (string.IsNullOrEmpty(imageUrl))
36. {

https://www.easy-coding.de/wiki/net/monotouch-asynchrone-uiimageview.html


37. Image = fallbackImage;
38. IsLoading = false;
39. return;
40. }
41.42. IsLoading = true;
43. Image = new BitmapImage();
44.45. Image.ImageOpened += (s, e) => { IsLoading = false; };
46. Image.DownloadProgress += (s, e) => { DownloadProgress = e.Progress; };
47. Image.ImageFailed += (s, e) =>
48. {
49. IsLoading = false;
50. Image = FallbackImage;
51. OnPropertyChanged("Image");
52. };
53.54. Image.UriSource = new Uri(imageUrl, UriKind.RelativeOrAbsolute);
55.56. FallbackImage = fallbackImage;
57. }
58.59. #endregion
60.61. #region Properties
62.63. /// <summary>
64. /// Gets or sets a value indicating whether this instance is loading.
65. /// </summary>
66. /// <value>
67. /// <c>true</c> if this instance is loading; otherwise, <c>false</c>.
68. /// </value>
69. public bool IsLoading
70. {
71. get { return isLoading; }
72. private set
73. {
74. if (value == isLoading)
75. return;
76.77. isLoading = value;
78. OnPropertyChanged("IsLoading");
79. }
80. }
81.82. /// <summary>
83. /// Gets or sets the download progress.
84. /// </summary>
85. /// <value>The download progress.</value>
86. public int DownloadProgress
87. {
88. get { return progress; }
89. private set
90. {
91. if (value == progress)
92. return;
93.94. progress = value;
95. OnPropertyChanged("DownloadProgress");
96. }
97. }
98.99. /// <summary>

100. /// Gets the image.
101. /// </summary>
102. /// <value>The image.</value>
103. public BitmapImage Image { get; private set; }
104.105. /// <summary>
106. /// Gets or sets the fallback image.

2https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-
Progressbars/?s=d8cf8ee8da3285483c9d4c6f5f4821e833a09e27

https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-Progressbars/
https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-Progressbars/


107. /// </summary>
108. /// <value>The fallback image.</value>
109. public BitmapImage FallbackImage
110. {
111. get;
112. private set;
113. }
114.115. #endregion
116.117. #region Events
118.119. /// <summary>
120. /// Called when [property changed].
121. /// </summary>
122. /// <param name="propertyname">The propertyname.</param>
123. protected virtual void OnPropertyChanged(string propertyname)
124. {
125. if (PropertyChanged != null)
126. PropertyChanged(this, new PropertyChangedEventArgs(propertyname));
127. }
128.129. /// <summary>
130. /// Occurs when a property value changes.
131. /// </summary>
132. public event PropertyChangedEventHandler PropertyChanged;
133.134. #endregion
135. }
136. }

Alles anzeigen

Wer den Code aufmerksam liest, erkennt, das es in dieser Version zusätzlich möglich ist, ein Fallback Image anzuzeigen, 
falls der Download schief läuft.

Und damit der Progressbar und der Platzhaltertext auch ein- bzw ausgeblendet wird brauchen wir noch den Visibility 
Converter. Dieser muss dann natürlich noch als Resource im XAML eingebunden werden:

Quellcode

1. using System;
2. using System.Globalization;
3. using System.Windows;
4. using System.Windows.Data;
5.6. namespace your.space
7. {
8. /// <summary>
9. /// Converter Class

10. /// </summary>
11. public class VisibilityConverter : IValueConverter
12. {
13. #region IValueConverter Members
14.15. /// <summary>
16. /// Modifies the source data before passing it to the target for display in the UI.
17. /// </summary>
18. /// <param name="value">The source data being passed to the target.</param>
19. /// <param name="targetType">The <see cref="T:System.Type"/> of data expected by the target dependency 

property.</param>
20. /// <param name="parameter">An optional parameter to be used in the converter logic.</param>
21. /// <param name="culture">The culture of the conversion.</param>
22. /// <returns>

3https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-
Progressbars/?s=d8cf8ee8da3285483c9d4c6f5f4821e833a09e27

https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-Progressbars/
https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-Progressbars/


23. /// The value to be passed to the target dependency property.
24. /// </returns>
25. public object Convert(object value, Type targetType, object parameter, CultureInfo culture)
26. {
27. return ((bool) value) ? Visibility.Visible : Visibility.Collapsed;
28. }
29.30. /// <summary>
31. /// Modifies the target data before passing it to the source object. This method is called only in <see 

cref="F:System.Windows.Data.BindingMode.TwoWay"/> bindings.
32. /// </summary>
33. /// <param name="value">The target data being passed to the source.</param>
34. /// <param name="targetType">The <see cref="T:System.Type"/> of data expected by the source object.</param>
35. /// <param name="parameter">An optional parameter to be used in the converter logic.</param>
36. /// <param name="culture">The culture of the conversion.</param>
37. /// <returns>
38. /// The value to be passed to the source object.
39. /// </returns>
40. public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture)
41. {
42. return null;
43. }
44.45. #endregion
46. }
47. }

Alles anzeigen

4https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-
Progressbars/?s=d8cf8ee8da3285483c9d4c6f5f4821e833a09e27

4https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-
Progressbars/?s=d8cf8ee8da3285483c9d4c6f5f4821e833a09e27

https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-Progressbars/
https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-Progressbars/
https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-Progressbars/
https://www.easy-coding.de/wiki/Entry/171-Asynchrones-Downloaden-eines-Bildes-mit-Anzeige-eines-Progressbars/

