Prozesse Forken mit PHP

Begriffsdefinition

Beim Forken wird ein zweiter identischer Prozess gestartet, wahrend
der erzeugende Prozess (auch Elternprozess genannt) weiter lauft.

Inhaltsverzeichnis

Alle Daten des ersten Prozesses, beispielsweise auch getffnete : ; Eigrlf;?gsﬂnron
Dateien, werden fir den zweiten Prozess kopiert und stehen fir diesen INSChrank g

N . . ¢ 3 Anwendungsfalle
nun getrennt zur Verfiigung. Jeder Prozess hat seinen eigenen « 2 Code

Speicher. Der zweite Prozess ist ein vollwertiger Prozess ohne
Einschrankung. Beide Prozesse kdnnen dann eigenstandig

weiterlaufen.

Einschrankung
PHP muss als CLI oder CGI Modul ausgefihrt werden. Bei der Ausfihrung als Apache Modul sind Threads
(sinnvollerweise) nicht méglich.

Anwendungsfalle

Wenn PHP auf einer Webseite ablauft macht es nur bedingt Sinn Prozesse zu forken. Selbst wenn man asynchrone
Aufrufe nutzt um, so wiirde man eine Server-Client-Architektur aus einem PHP-Controller und einem PHP-Modell
(Backend) nutzen.

Nutzt man PHP im Standalone Betrieb zum Beispiel tiber den Command Line Interpreter (CLI) gibt es zum Beispiel
Netzwerkanwendungen bei denen Forks Sinn machen. So kénnte der Elternprozess auf eingehende Verbindungen
warten und fir jeden verbundenen Client einen Fork erstellen.

Ein weiterer Anwendungsfall ist die Implementierung einer Job-Queue. So kdnnte ein Hauptprozess fur jeden Job einen
eigenen Prozess abspalten.

Code

Der Programmablauf ist bis zum Aufruf von pcntl_fork() ganz normal. Nach dem Aufruf miisst ihr euch 2 Programme
vorstellen, die ab dieser Stelle die Programmausfuhrung fortsetzen.

Das eine "Programm" hat die Variabe $pid auf 0 gesetzt - das ist der Kindprozess. Bei dem anderen Programm ist die
$pid im positiven Wertebereich. Die $pid stimmt mit der ProzessID im Betriebssystem tberein.

Wir sammeln die Prozess-1Ds der Kindprozesse in einem Array $pid_array und fragen deren Status mit waitpid ab. Sobald
diese Prozesse terminieren lassen wir sie sterben.

Ohne den Aufruf von waitpid wirden mehr und mehr Prozesse entstehen. In einem eigenen Projekt wurde nach 2 Tagen
Laufzeit einen Fatal error: pcntl_fork(): Error 12 gemeldet, der vermutlich gesedet wird nachdem die maximale Anzahl
moglicher Betriebssystemprozesse erreicht wird.

Quellcode

1. <?php
2. [
3. *as you can see the "main"-process does not sleep
4. *
5. function performSomeFunction($i) {
6. echo $i."\n";
7. sleep(5);
8.}
10. $i=0;
11. $pid_arr = array();
12. while(true) {
13. sleep(1);
18. // any childs waiting to proving the dead?
16. foreach ($pid_arr as $pid => $i) {
17. // we are the parent

https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Begriffsdefinition
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Begriffsdefinition
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Einschränkung
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Einschränkung
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Anwendungsfälle
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Anwendungsfälle
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Code
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Code

18. $kill = pentl_waitpid($pid, $status, WNOHANG);
19. if($kill > 0) {

20. unset($pid_arr[$pid]);

21. }

22. }

28. $pid = pentl_fork();

25. if ($pid == -1) {

26. die('could not fork");

27.}

28. else if ($pid) { // parent

29. $pid_arr[$pid] = true;

30. }

31. else {// child

32. performSomeFunction($i+1);
33. exit(0);

34. }

35. $it++;

36. }

37. ?>

Alles anzeigen

https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/?s=2640cb6f1bf841a4505855f054e5d3cbalb77630

https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/

