
Prozesse Forken mit PHP

Begriffsdefinition
Beim Forken wird ein zweiter identischer Prozess gestartet, während
der erzeugende Prozess (auch Elternprozess genannt) weiter läuft.
Alle Daten des ersten Prozesses, beispielsweise auch geöffnete
Dateien, werden für den zweiten Prozess kopiert und stehen für diesen
nun getrennt zur Verfügung. Jeder Prozess hat seinen eigenen
Speicher. Der zweite Prozess ist ein vollwertiger Prozess ohne
Einschränkung. Beide Prozesse können dann eigenständig
weiterlaufen.

Einschränkung
PHP muss als CLI oder CGI Modul ausgeführt werden. Bei der Ausführung als Apache Modul sind Threads
(sinnvollerweise) nicht möglich.

Anwendungsfälle
Wenn PHP auf einer Webseite abläuft macht es nur bedingt Sinn Prozesse zu forken. Selbst wenn man asynchrone
Aufrufe nutzt um, so würde man eine Server-Client-Architektur aus einem PHP-Controller und einem PHP-Modell
(Backend) nutzen.
Nutzt man PHP im Standalone Betrieb zum Beispiel über den Command Line Interpreter (CLI) gibt es zum Beispiel
Netzwerkanwendungen bei denen Forks Sinn machen. So könnte der Elternprozess auf eingehende Verbindungen
warten und für jeden verbundenen Client einen Fork erstellen.
Ein weiterer Anwendungsfall ist die Implementierung einer Job-Queue. So könnte ein Hauptprozess für jeden Job einen
eigenen Prozess abspalten.

Code
Der Programmablauf ist bis zum Aufruf von pcntl_fork() ganz normal. Nach dem Aufruf müsst ihr euch 2 Programme
vorstellen, die ab dieser Stelle die Programmausführung fortsetzen.
Das eine "Programm" hat die Variabe $pid auf 0 gesetzt - das ist der Kindprozess. Bei dem anderen Programm ist die
$pid im positiven Wertebereich. Die $pid stimmt mit der ProzessID im Betriebssystem überein.
Wir sammeln die Prozess-IDs der Kindprozesse in einem Array $pid_array und fragen deren Status mit waitpid ab. Sobald
diese Prozesse terminieren lassen wir sie sterben.

Ohne den Aufruf von waitpid würden mehr und mehr Prozesse entstehen. In einem eigenen Projekt wurde nach 2 Tagen
Laufzeit einen Fatal error: pcntl_fork(): Error 12 gemeldet, der vermutlich gesedet wird nachdem die maximale Anzahl
möglicher Betriebssystemprozesse erreicht wird.

Quellcode

1. <?php
2. /**
3. * as you can see the "main"-process does not sleep
4. */
5. function performSomeFunction($i) {
6. echo $i."\n";
7. sleep(5);
8. }
9.10. $i = 0;

11. $pid_arr = array();
12. while(true) {
13. sleep(1);
14.15. // any childs waiting to proving the dead?
16. foreach ($pid_arr as $pid => $i) {
17. // we are the parent

Inhaltsverzeichnis

1 Begriffsdefinition
2 Einschränkung
3 Anwendungsfälle
4 Code

https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Begriffsdefinition
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Begriffsdefinition
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Einschränkung
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Einschränkung
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Anwendungsfälle
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Anwendungsfälle
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Code
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/#Code

18. $kill = pcntl_waitpid($pid, $status, WNOHANG);
19. if($kill > 0) {
20. unset($pid_arr[$pid]);
21. }
22. }
23.24. $pid = pcntl_fork();
25. if ($pid == -1) {
26. die('could not fork');
27. }
28. else if ($pid) { // parent
29. $pid_arr[$pid] = true;
30. }
31. else { // child
32. performSomeFunction($i+1);
33. exit(0);
34. }
35. $i++;
36. }
37. ?>

Alles anzeigen

2https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/?s=2640cb6f1bf841a4505855f054e5d3cba1b77630 2https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/?s=2640cb6f1bf841a4505855f054e5d3cba1b77630

https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/
https://www.easy-coding.de/wiki/Entry/27-Prozesse-Forken-mit-PHP/

