
Objektorientierung mit Exceptions

Definition
Exceptions sind Ausnahmebehandlungen im Programmcode.
Die Verwendung ist einfach. Durch werfen von Exceptions mittels
throw new Exception('foo') sorgt man dafür, dass der Programmfluss
abbricht.
Durch Verwendung von try {} catch(Exception $e) kann man den
Fehler dann behandeln ohne, dass der komplette Programmcode
abbricht. Es gleicht der Abbruchbedingung in einer Schleife.

Das Spiel der Verantwortlichkeiten
Das spannende an Exceptions ist die Frage wo man sie am besten platziert und wie man sie verwendet.
Objektorientierung und vor allem die Frage wo platziert man welchen Code ist ein Spiel mit Verantwortlichkeiten.
Ist es Aufgabe des Formulars (also dem "Controller") die Fehleingaben automatisch zu korrigieren, oder ist es Aufgabe
des Benutzer Models optionale Angaben durch Defaults zu ersetzen.

Eine einfache Frage die ich häufig nutze um das Ganze zu erläutern ist: An welchen Stellen benötigt man die Funktion
denn noch.
Wenn dann nicht sofort und ohne Zweifel eine Antwort kommt, dann heißt das doch, dass man die Funktion theoretisch
überall einbauen kann.
Und damit gehört der Code an den abstraktesten Punkt an dem es möglich ist und was von überall verwendet wird.

Beispiel
Exceptions sind für Ausnahmen die man nicht automatisch auflösen kann oder will. Gehen wir von einem User Modell aus
das auf dem abstraken Modell des Tutorials [wiki]Objektorientierung mit Models[/wiki] aufbaut.
Quellcode

1. class User extends Model {
2. const MIN_PASSWORD_LENGTH = 8;
3.4. public function validate() {
5. $error = array();
6. if(empty($this->firstname)) {
7. $error['firstname'] = 'firstname';
8. }
9. if(strlen($this->password) < self::MIN_PASSWORD_LENGTH) {

10. $error['password'] = 'to short';
11. }
12. if(count($error)) {
13. throw new ValidateException($error);
14. }
15. }
16. }

Alles anzeigen

Man sieht, dass ich keine normale Exception Klasse gewählt habe, sondern stattdessen eine ValidateException
verwende, die ein Array als Parameter empfängt. Das mache ich wegen der häufigen Anforderung, dass man mehrere
Validierungen bei gleichzeitiger Benutzereingabe durchführt.

Die Klasse sieht wie folgt aus
Quellcode

1. class ValidateException extends Exception {

Inhaltsverzeichnis

1 Definition
2 Das Spiel der Verantwortlichkeiten
3 Beispiel

3.1 Unbehandelete Exception
3.2 Behandelte Exception

https://www.easy-coding.de/wiki/Entry/61-Objektorientierung-mit-Models/?s=ed942faec28e1ac7193f9b7544c103e89bd38978
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Definition
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Definition
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Das_Spiel_der_Verantwortlichkeiten
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Das_Spiel_der_Verantwortlichkeiten
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Beispiel
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Beispiel
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Unbehandelete_Exception
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Unbehandelete_Exception
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Behandelte_Exception
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Behandelte_Exception

2. protected $errors;
3. public function __construct($list) {
4. $this->errors = is_array($list) ? $list : array($list);
5. parent::__construct('validation');
6. }
7. public function getErrors() {
8. return $this->errors;
9. }

10. }

Unbehandelete Exception
Speicher ich ein Formular mit fehlenden Daten ab, dann erhalte ich eine unbehandelete Exception die zum Abbruch des
Programms führt:
Quellcode

1. $user = new User();
2. $user->save(array(/* empty */));

Die Ausgabe lautet wie folgt: Fatal error: Uncaught exception 'ValidateException' with message 'validation'

Behandelte Exception
Im konkreten Fall wollen wir den Benutzer bei einer Formulareingabe aber darauf aufmerksam machen, dass er seine
Eingaben doch möglichst ergänzen soll.
Dazu "fangen" wir die Exception und stellen die Fehlermeldungen dar. Der Programmfluss des Speicherns wurde beim
throw new Exception abgebrochen - wir haben also keinen Speichervorgang durchgeführt.
Quellcode

1. <?php
2. function i18n($var) {
3. return 'translation for '.$var;
4. }
5.6. $errors = array();
7. $message = '';
8. $user = null;
9. if(count($_POST)) {

10. $user = new User($_POST);
11. try {
12. $user->save();
13. } catch(ValidateException $e) {
14. $errors = $e->getErrors();
15. foreach($errors as $error) {
16. $message .= i18n('error.'.$error).'
';
17. }
18. }
19. }
20. ?>
21. <?= $message ?>
22. <form method="post">
23. <div<?if (array_key_exists('email', $errors)) echo ' style="background-color:#ffaaaa"' ?>>email:
24. <input type="text" name="email" value="<?if($user) echo $user->email?>" />
25. </div>
26. <div<?if (array_key_exists('password', $errors)) echo ' style="background-color:#ffaaaa"' ?>>password:
27. <input type="password" name="password" value="<?if($user) echo $user->password?>"/>
28. </div>

2https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/?s=ed942faec28e1ac7193f9b7544c103e89bd38978

https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/

29. <div<?if (array_key_exists('firstname', $errors)) echo ' style="background-color:#ffaaaa"' ?>>firstname:
30. <input type="text" name="firstname" value="<?if($user) echo $user->firstname?>"/>
31. </div>
32. <div<?if (array_key_exists('lastname', $errors)) echo ' style="background-color:#ffaaaa"' ?>>lastname:
33. <input type="text" name="lastname" value="<?if($user) echo $user->lastname?>"/>
34. </div>
35. <input type="submit">
36. </form>

Alles anzeigen

3https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/?s=ed942faec28e1ac7193f9b7544c103e89bd38978 3https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/?s=ed942faec28e1ac7193f9b7544c103e89bd38978

https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/

