Objektorientierung mit Exceptions

Definition

Exceptions sind Ausnahmebehandlungen im Programmcode.

Die Verwendung ist einfach. Durch werfen von Exceptions mittels
throw new Exception(‘foo’) sorgt man dafir, dass der Programmfluss
abbricht. —
Durch Verwendung von try {} catch(Exception $e) kann man den * 3 Beispiel .
Fehler dann behandeln ohne, dass der komplette Programmcode o 3.1 Unbehandelete Exgeptlon
abbricht. Es gleicht der Abbruchbedingung in einer Schleife. ° 3.2 Behandelte Exception

Inhaltsverzeichnis

¢ 1 Definition
e 2 Das Spiel der Verantwortlichkeiten

Das Spiel der Verantwortlichkeiten

Das spannende an Exceptions ist die Frage wo man sie am besten platziert und wie man sie verwendet.
Objektorientierung und vor allem die Frage wo platziert man welchen Code ist ein Spiel mit Verantwortlichkeiten.

Ist es Aufgabe des Formulars (also dem "Controller") die Fehleingaben automatisch zu korrigieren, oder ist es Aufgabe
des Benutzer Models optionale Angaben durch Defaults zu ersetzen.

Eine einfache Frage die ich haufig nutze um das Ganze zu erldutern ist: An welchen Stellen benétigt man die Funktion
denn noch.

Wenn dann nicht sofort und ohne Zweifel eine Antwort kommt, dann heif3t das doch, dass man die Funktion theoretisch
Uberall einbauen kann.

Und damit gehdrt der Code an den abstraktesten Punkt an dem es mdglich ist und was von tberall verwendet wird.

Beispiel
Exceptions sind fur Ausnahmen die man nicht automatisch auflésen kann oder will. Gehen wir von einem User Modell aus
das auf dem abstraken Modell des Tutorials [wiki]Objektorientierung mit Models[/wiki] aufbaut.

Quellcode

1. class User extends Model {
2. const MIN_PASSWORD_LENGTH = 8;
8. public function validate() {
5. S$error = array();
6. if(empty($this->firstname)) {
7. $error[firstname’] = 'firstname";
8.}
9. if(strlen($this->password) < self::MIN_PASSWORD_LENGTH) {
10. $error['password’] = 'to short’;
11. }
12. if(count($error)) {
13. throw new ValidateException($error);
14. }
15. }
16. }

Alles anzeigen

Man sieht, dass ich keine normale Exception Klasse gewahlt habe, sondern stattdessen eine ValidateException
verwende, die ein Array als Parameter empfangt. Das mache ich wegen der haufigen Anforderung, dass man mehrere
Validierungen bei gleichzeitiger Benutzereingabe durchfiihrt.

Die Klasse sieht wie folgt aus
Quellcode

1. class ValidateException extends Exception {

https://www.easy-coding.de/wiki/Entry/61-Objektorientierung-mit-Models/?s=ed942faec28e1ac7193f9b7544c103e89bd38978
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Definition
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Definition
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Das_Spiel_der_Verantwortlichkeiten
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Das_Spiel_der_Verantwortlichkeiten
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Beispiel
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Beispiel
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Unbehandelete_Exception
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Unbehandelete_Exception
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Behandelte_Exception
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/#Behandelte_Exception

protected $errors;

public function __construct($list) {

$this->errors = is_array($list) ? $list : array($list);
parent::__construct('validation');

}

public function getErrors() {

return $this->errors;

}

}

COoNGA~WDN

=

Unbehandelete Exception
Speicher ich ein Formular mit fehlenden Daten ab, dann erhalte ich eine unbehandelete Exception die zum Abbruch des
Programms fuhrt:

Quellcode

1. $user = new User();
2. $user->save(array(/* empty */));

Die Ausgabe lautet wie folgt: Fatal error: Uncaught exception 'ValidateException' with message 'validation'

Behandelte Exception

Im konkreten Fall wollen wir den Benutzer bei einer Formulareingabe aber darauf aufmerksam machen, dass er seine
Eingaben doch mdglichst erganzen soll.

Dazu "fangen" wir die Exception und stellen die Fehlermeldungen dar. Der Programmfluss des Speicherns wurde beim
throw new Exception abgebrochen - wir haben also keinen Speichervorgang durchgefiihrt.

Quellcode

1. <?php

2. function i18n($var) {
3. return 'translation for '.$var;
4.}

6. $errors = array();
7. $message = ";
8. $user = null;

9. if(count($_POST)) {

10. $user = new User($_POST);

11. try {

12. $user->save();

13. } catch(ValidateException $e) {

14. $errors = $e->getErrors();

15. foreach($errors as $error) {

16. $message .= i18n(‘error.".$error).'
";

17. }

18. }

19. }

20. ?>

21. <?=%message ?>

22. <form method="post">

23. <div<?if (array_key_exists(‘email', $errors)) echo ' style="background-color:#ffaaaa
24. <input type="text" name="email" value="<?if($user) echo $user->email?>" />

25. </div>

26. <div<?if (array_key_exists('password’, $errors)) echo ' style="background-color:#ffaaaa™ ?>>password:
27. <input type="password" name="password" value="<?if($user) echo $user->password?>"/>

28. </div>

?>>email:

https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/?s=ed942faec28e1ac7193f9b7544c103e89bd38978

https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/

29. <div<?if (array_key_exists(‘firsthame’, $errors)) echo ' style="background-color:#ffaaaa™ ?>>firstname:
30. <input type="text" name="firstname" value="<?if($user) echo $user->firstname?>"/>
31. </div>

32. <div<?if (array_key_exists('lastname’, $errors)) echo ' style="background-color:#ffaaaa
33. <input type="text" name="lastname" value="<?if($user) echo $user->lastname?>"/>
34. </div>

35. <input type="submit">

36. </form>

?>>lastname:

Alles anzeigen

https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/?s=ed942faec28e1ac7193f9b7544c103e89bd38978

https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/
https://www.easy-coding.de/wiki/Entry/62-Objektorientierung-mit-Exceptions/

