AJAX [/ Comet Chat Tutorial

== Server zu Client Kommunikation ==

Alles was uber das HTTP Protokoll funktioniert geht immer vom Client aus. Der Client fragt etwas an, der Server
antwortet. Anders funktioniert es nicht. Man kann nur versuchen einer Server zu Client Kommunikation méglichst nahe zu
kommen.

== AJAX ==
Wer bereits etwas Erfahrung mit AJAX hat, der wiirde einen Chat vermutlich mit einem setinterval programmieren, der
kontinuierlich in Abstéanden von 2-3 Sekunden beim Server nachfragt ob es Anderungen gibt.

Wenn der Client den Server kontinuierlich nach Informationen abfragt, dann nennt man das Pollen. Es ist eine Art Ping
Pong und die Technik ist sehr einfach zu implementeren. Beispiele flrs Polling findet ihr hier: [wikilMehrere DIV Container

mit AJAX aktualisieren[/wiki]

== Problem Polling ==

Das Problem am Polling ist, dass bei 100 gleichzeitigen Besuchern jede Sekunde Sekunde 100 Anfragen gemacht
werden mussen, auch wenn gar nichts passiert.

Das erhoht die Last fir den Server und auch beim Client vergeht unnétig Latenzzeit fir die ganzen erzeugten
Verbindungen.

== Comet ==

Fur Comet gibt es keine Voraussetzungen, es ist keine Erweiterung oder eine spezielle Programmiersprache. Comet ist
das Vorgehen, das es dem Server erlaubt Stiick fur Stick Informationen an den Client freizugeben wéhren eine einzige
HTTP Verbindung offen gehalten wird.

Der Browser fragt also den Client: "gib mir alle Chat Nachrichten".

Und der Server antwortet; "Hier hast diese..." und nach gewisser Zeit "Hier hast du jene ...".

Er lasst sich mit der Antwort also Zeit und pumpt nach und nach mehr Nachrichten zurtick an den Client, die sogar viel
neuer sein kdnnen, als der Zeitpunkt zu dem der Client zum ersten mal angefragt hat.

=== Beispiel ===
Quellcode

1. <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.0rg/TR/xhtmI11/DTD/xhtml11.dtd">

2. <html xmIns="http://www.w3.0rg/1999/xhtm|">

3. <head>

4. <title>Comet example 1</title>

5. <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

6. <script type="text/javascript">

7. function chat(txt) {

8. document.getElementByld("chat").innerHTML += txt;

9.}

10. </script>

11. </head>

12. <body>

13. <div id="chat"></div>

16. <?php

17. for($i=0; $i<10; $i++) {

18. echo '<script type="text/javascript">";

20. echo ‘chat("<p>server is still alive at '.date("Y-m-d H:i:s").'</p>");";
21. echo '</script>";

23. // sende die Ausgabe zum Browser

24. flush();

26. // warte 0.2 Sekunden um den Server zu entlasten

27. usleep(200000);

https://www.easy-coding.de/wiki/Entry/64-Mehrere-DIV-Container-mit-AJAX-aktualisieren/?s=84a992bbb37aa479dd1eb6f4a95b2eac7346ba2a
https://www.easy-coding.de/wiki/Entry/64-Mehrere-DIV-Container-mit-AJAX-aktualisieren/?s=84a992bbb37aa479dd1eb6f4a95b2eac7346ba2a

28. }

29. 7>

30. <script type="text/javascript">
32. chat("<p>server is done</p>");
33. </script>

34. </body>

35. </html>

Alles anzeigen

Erweiterung mit Datenbankabfrage
In Zeile #18 konnt ihr nun eure Datenbankabfrage einbauen, die immer wieder prift ob neue Nachrichten da sind. Wenn
keine neuen Nachrichten vorhanden sind, masst ihr natdrlich auch keine Nachricht senden.

=== Demo ===
Ihr findet die Online Demo unter: demo.easy-coding.de/ajax/comet-chat-tutorial/examplel.php

=== Einschrankungen #1 ===

Das Beispielssript beendet sich nach 10 Schleifendurchlaufen. Ihr kénntet es aber mit einer while Schleife unendlich
laufen lassen, dann wirdet ihr irgendwann einen Fehler bekommen, dass die "max execution time" - die maximale
Ausfuhrzeit fur ein Script Uberschritten wurde.

AuRRerdem habt ihr potentiell immer noch 100 offene Verbindungen wahrend einer Sekunde. Die Anzahl an
Verbindungsaufbauten habt ihr aber schon deutlich reduziert.

== AJAX & Comet ==

Ihr kénnt AJAX und Comet zusammen benutzen. Das wird so ablaufen, dass der Client nach neuen Nachrichten fragt und
der Server immer antwortet, wenn eine neue Nachricht verfiigbar ist. Danach schlief3t er die Verbindung und ein neuer
AJAX Request wird gestartet.

Fir die AJAX Funktionalitat hangen wir die ajax.js ein, die wir hier schon in mehreren Beispielen verwendet haben.

Der Klasse die wir gleich erstellen miissen wir einen DIV Container und eine AJAX Url geben. Au3erdem geben wir den
Default Zeitstempel an. mit dem wir beginnen.

Quellcode

1. var chat = new Chat('chat’, 'example2-backend.php', new Date().getTime());

Die eigentlich update Funktion muss also, immer wenn sie eine Antwort bekommt (es also neue Nachrichten gibt), einen
neuen Request senden. Immer wenn es zu Fehlern kommt, geben wir dem Script 5 Sekunden Aufschub und starten den
Request dann erneut.

Die gesamte Klasse und Client Logik sieht damit wie folgt aus:

Quellcode

1. function Chat(div, url, lastupdate) {
2. this.div = div;
3. this.url = url;
4. this.lastupdate = lastupdate || null;
B. this.start = function(lastupdate) {
7. this.lastupdate = lastupdate || this.lastupdate;
8. ajaxPost(this.url, 'lastupdate="+ this.lastupdate, function(up) {
9. return function() {

10. if (this.readyState == 4) {

11. // success

https://www.easy-coding.de/wiki/Entry/78-AJAX-Comet-Chat-Tutorial/?s=84a992bbb37aa479dd1eb6f4a95b2eac7346ba2a

http://demo.easy-coding.de/ajax/comet-chat-tutorial/example1.php
https://www.easy-coding.de/wiki/Entry/78-AJAX-Comet-Chat-Tutorial/

12. if(this.status == 200) {

13. var data = eval('(' + this.responseText + ')");
18. // start next timer, if response is empty, reuse the last known update index
16. up.start(data.lastupdate || up.lastupdate);
18. //fill chat

19. if(data.html) {

20. document.getElementByld(up.div).innerHTML += data.html;
21. }

22. }

23. // connection error

25. else{

26. // try again in 5 seconds

27. setTimeout(function(){

28. up.start(up.lastupdate);

29. }, 5000);

30. }

31. }

32. };

33. }(this));

34. %

35. }

Alles anzeigen

Serverseitig in der example2-backend.php werden wir nur Antworten wenn wir eine Antwort haben. Wir werden dann
HTML Code und den neuen Zeitstempel zuriickgeben:

Quellcode

1. <?php

2. function getNewMessagesSince($timestamp) {

3. if(rand(1,20) == 5) {

4. return array(

5. 'lastupdate’ => time(),

6. 'html' => '<p>server is still alive at '.date("Y-m-d H:i:s").'</p>'

7.);

8.}

9
10
12
13

. return false;
-}
. $timeout = time() + 10;
. while(!($row = getNewMessagesSince($_POST['lastupdate')) && time() < $timeout) {
14. // warte 0.2 Sekunden um den Server zu entlasten
15. usleep(200000);
16. }
18. // liefere den Inhalt
19. echo json_encode($row);

Alles anzeigen

=== Demo ===
Ihr findet die Online Demo unter: demo.easy-coding.de/ajax/comet-chat-tutorial/example2.php

== Fazit ==

Das zweite Script antwortet immer, wenn es eine neue Antwort gibt. Bei einem haufig genutzten Chat wére aber Beispiel
eins besser, weil man hier mehrere Nachrichten tber eine Verbindung schicken kann.

Auch denkbar wére den readyState 3 als Stream zu benutzen. Allerdings kann der Internet Explorer dies nicht. Mit einer
JavaScript Bibliothek, die fir die unterstiitzen Browser readyState 3 nutzt, und fir die Internet Explorers dieser Welt auf

https://www.easy-coding.de/wiki/Entry/78-AJAX-Comet-Chat-Tutorial/?s=84a992bbb37aa479dd1eb6f4a95b2eac7346ba2a

http://demo.easy-coding.de/ajax/comet-chat-tutorial/example2.php
https://www.easy-coding.de/wiki/Entry/78-AJAX-Comet-Chat-Tutorial/

eine Iframe/Ajax Kombination zuriick greift, ware dem AJAX/Comet Chat nichts mehr im Wege "=

Die beste Losung ist also die Kombination aller Verfahren. Ich gebe an dieser Stelle keine Referenzimplementierung vor.
Ihr solltet mit den hier erworbenen Kenntnissen aber loslegen kénnen um die perfekte Lésung zu implementieren.

Den Download aller Scripte findet ihr hier: demo.easy-coding.de/ajax/comet-chat-tutorial/download.zip

== Weiterfuhrende Wikis ==

¢ [wikilComet Chat Beispiel mit PHP + MySQL][/wiki]

https://www.easy-coding.de/wiki/Entry/78-AJAX-Comet-Chat-Tutorial/?s=84a992bbb37aa479dd1eb6f4a95b2eac7346ba2a

http://demo.easy-coding.de/ajax/comet-chat-tutorial/download.zip
https://www.easy-coding.de/wiki/Entry/78-AJAX-Comet-Chat-Tutorial/
https://www.easy-coding.de/wiki/Entry/78-AJAX-Comet-Chat-Tutorial/

