Upload Fortschritt mit PHP + AJAX

== Voraussetzung ==
Voraussetzung zum Betrieb des Upload Scripts ist ein aktiviertes APC. Wie das funktioniert erfahrt ihr hier: [wiki]APC
unter Linux installieren[/wiki].

== Normaler PHP Upload ==

Zuerst bendtigen wir ein normales Upload Script. Wir erstellen dazu 2 Dateien. Die Datei index.html dient als Sender. Sie
nimmt die Formulareingaben entgegen und bietet den Upload Button.

Sie sendet die Eingabe an die Datei upliad.php, die den eigentlich Uploadvorgang durchfihrt.

Das komplette Beispiel sieht folgendermaf3en aus:

Quellcode
1. <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.0rg/TR/xhtmI11/DTD/xhtml11.dtd">
2. <html xmIns="http://www.w3.0rg/1999/xhtmlI" dir="Itr" xml:lang="de">
3. <head>
4. <title>APC Upload</title>
5. </head>
6. <body>
7. <form action="upload.php" method="post" enctype="multipart/form-data">
8. <div>
9. <input type="file" name="upload" />

10. <input type="submit" />
11. </div>

12. </form>

13. </body>

14. </html>

Alles anzeigen

Quellcode

<?php

if(isset($_FILES['uploadT)) {

echo "File upload successfull";

move_uploaded_file($_FILES['upload]['tmp_name"], 'cache/'.$_FILES['upload['name);
}

?>

ourwdE

Die Statusmeldung, dass der Upload komplett war, wird erst nach dem gesamten Datentransfer ausgegeben.
Dies verdeutlicht auch den Nutzen einer Fortschrittsanzeige fur den Benutzer, der womdglich mehrere Minuten oder gar
Stunden warten muss, ohne dass er ein visuelles Feedback erhalt.

== PHP Upload ohne Seite blockieren ==

Sind noch andere Elemente auf der Webseite vorhanden, sind diese wahrend des Uploadprozesses blockiert. Der Sender
wurde verlassen oder der Empfanger ist noch nicht fertig, Man befindet sich in einem Status, der nichts ganzes und nichts
halbes ausdruckt.

Um ein Blockieren der Seite zu verhindern, fihren wir den Uploadprozess in einem separaten Fenster durch. Da mehrere
Fenster irritieren nutzen wir ein Fenster im Fenster - einen Iframe.

Diesen Adressieren wir Uber einen Namen und das Form-Attribut "target”. Zusatzlich kdnnen wir das Iframe Fenster durch
die Style Eigenschaft display:none unsichtbar machen.

https://www.easy-coding.de/wiki/Entry/43-APC-unter-Linux-installieren/?s=7be8cfa5c2c313820bf95baf8e01e59fa2a41a7c
https://www.easy-coding.de/wiki/Entry/43-APC-unter-Linux-installieren/?s=7be8cfa5c2c313820bf95baf8e01e59fa2a41a7c

Quellcode

1. <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.0rg/TR/xhtm|11/DTD/xhtml11.dtd">
2. <html xmIns="http://www.w3.0rg/1999/xhtml" dir="Itr" xml:lang="de">

3. <head>

4. <title>APC Upload</title>

5. </head>

8. <body>

8. <iframe src="upload.php" name="hidden_upload"></iframe>

10. <form action="upload.php" target="hidden_upload" method="post" enctype="multipart/form-data">
11. <div>

12. <input type="file" name="upload" />

13. <input type="submit" />

14. </div>

15. </form>

16. </body>

17. </html>

Alles anzeigen

== Uploadfortschritt mit APC ==

APC Uploads selbst lassen sich tber IDs adressieren. Mit Hilfe dieser ID kann man parallel zum Upload in jedem
beliebigem Fenster und von jedem beliebigem Browser den Status abfragen.

Wir erzeugen die ID selbst mit Hilfe der Funktion unigid() - hier kann aber jede beliebige andere Funktion genutzt werden.
Damit der Upload die ID verwendet missen wir das Formularelement APC_UPLOAD_PROGRESS zusammen mit der
Datei tbertragen.

Um den Status parallel in einem zweiten Prozess abzufragen missen wir ihm diese ID mitteilen. Dazu nutzen wir
JavaScript.

Um den Status regelmafig abzufragen starten wir beim Driicken auf den Upload Button einen JavaScript Timer und
zeigen in einem regelmafigen Intervall den Status des Upload an.

Die Methode "ajax" nimmt den Wert von APC_UPLOAD_PROGRESS als Parameter und fragt mit diesem Wert alle 750
Millisekunden den aktuellen Upload Status ab. Gezeigt wird die Riickgabe per AJAX in einem DIV mit der ID status.

Fur den Status der Datei benétigen wir eine weitere Datei, die wir status.php nennen.
Sie hat folgenden Inhalt:

Quellcode

<?php

$arr = apc_fetch("upload_{$_GET[uid}");
printf("<pre>%s</pre>", print_r($arr,true));
?>

rpobdPE

Die Funktion apc_fetch liefert uns ein assoziatives Array aus denen sich das Verhaltnis zwischen "bereits hochgeladen"
und "Gesamtgrofl3e” berechnen lasst. Die Funktion kann weiter genutzt werden um die Uploadgeschwindigkeit oder viele
weitere Statistiken anzuzeigen.

Quellcode
1. Array (
2. [total] => 1142543
3. [current] => 1142543
4. [rate] => 1828068.8
5. [filename] => test
6. [name] => file
7. [temp_filename] => tmp/php8F
8. [cancel_upload] => 0

https://www.easy-coding.de/wiki/Entry/8-Upload-Fortschritt-mit-PHP-AJAX/?s=7he8cfa5c2c313820bf95baf8e01e59fa2a4la7c

https://www.easy-coding.de/wiki/Entry/8-Upload-Fortschritt-mit-PHP-AJAX/

9. [done] =>1
10.)

Die Aktualisierte index.php die nun php bendtigt sieht wie folgt aus:

Quellcode
1. <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.0rg/TR/xhtmI11/DTD/xhtml11.dtd">
2. <html xmins="http://www.w3.0rg/1999/xhtml" dir="Itr" xml:lang="de">
3. <head>
4. <title>APC Upload</title>
5. <script type="text/javascript">
6. //[</[CDATA[
7. function ajax(uid) {
8. varreq;
9. try{

10. req = window.XMLHttpRequest?new XMLHttpRequest():

11. new ActiveXObject("Microsoft XMLHTTP");

12. }catch (e) {

13. //Kein AJAX Support

14. }

16. reg.onreadystatechange = function() {

17. if ((reqg.readyState == 4) && (req.status == 200)) {

18. document.getElementByld("status").innerHTML = req.responseText;

19. }

20. }

21. req.open('GET', 'status.php?uid="+uid);

22. req.send(null);

23. }

24. N>

25. </script>

26. </head>

28. <body>

29. <iframe src="upload.php" name="hidden_upload" style="display:none"></iframe>

30. <div id="status"></div>

32. <form action="upload.php" target="hidden_upload" method="post" enctype="multipart/form-data">

33. <div>

34. <input type="hidden" name="APC_UPLOAD_PROGRESS" value="<?php echo uniqid();?>"/>

35. <input type="file" name="upload" />

36. <input type="submit" onclick="this.disabled=true;
setinterval(‘ajax(\"+this.form.APC_UPLOAD_PROGRESS.value+'\)', 750); "/>

37. </div>

38. </form>

39. </body>

40. </html>

Alles anzeigen

== Upload groRRer Dateien ==

Der Upload grof3er Dateien funktioniert nur, wenn der Server dies auch erlaubt. Prift dazu die folgenden beiden PHP

Einstellungen: upload_max_filesize und post_max_size.

post_max_size integer setzt die maximal erlaubte Gré3e von POST-Daten. Diese Option betrifft auch den Datei-Upload.

Um grol3ere Dateien hochzuladen, muss der Wert grof3er sein als upload_max_filesize. Wenn eine maximale
Speichergrenze wahrend des Kompilierens aktiviert wurde, dann betrifft auch memory_limit den Datei-Upload.

Ihr setzt die Einstellung in der php.ini Datei.

https://www.easy-coding.de/wiki/Entry/8-Upload-Fortschritt-mit-PHP-AJAX/?s=7he8cfa5c2c313820bf95baf8e01e59fa2a4la7c

https://www.easy-coding.de/wiki/Entry/8-Upload-Fortschritt-mit-PHP-AJAX/

== Demo ==
Den kompletten Download gibt es unter: demo.easy-coding.de/php/ajax-upload-progress/download.zip

https://www.easy-coding.de/wiki/Entry/8-Upload-Fortschritt-mit-PHP-AJAX/?s=7be8cfa5c2c313820bf95baf8e01e59fa2a4la7c

http://demo.easy-coding.de/php/ajax-upload-progress/download.zip
https://www.easy-coding.de/wiki/Entry/8-Upload-Fortschritt-mit-PHP-AJAX/
https://www.easy-coding.de/wiki/Entry/8-Upload-Fortschritt-mit-PHP-AJAX/

